metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Michael L. Williams, Sue E. Boyd, Samuel P. C. Dunstan, Deborah L. Slade and Peter C. Healy*

School of Science, Griffith University, Nathan, Brisbane 4111, Australia

Correspondence e-mail: p.healy@griffith.edu.au

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.008 Å R factor = 0.030 wR factor = 0.079 Data-to-parameter ratio = 20.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bromo[(diphenylphosphino-*κP*)(diphenylphosphinoyl)methane]gold(I) acetonitrile solvate

In the title compound, $[AuBr(dppmO)] \cdot CH_3CN$ [dppmO = $Ph_2P(CH_2)P(O)Ph_2$], the dppmO ligand coordinates through the P donor to give a linear two-coordinate P-Au-Br gold(I) complex. The Au-Br and Au-P bond lengths are 2.241 (2) and 2.4069 (19) Å, respectively. The P-Au-Br and P=O groups lie almost parallel to each other $[O-P \cdots P-Au = 8.3 (2)^{\circ}]$, while the intramolecular Au···O distance is 3.274 (4) Å.

Comment

Mixed bidentate phosphine–phosphine oxide ligands of general formula $R_2P-Y-P(O)R_2$, where Y is an organic spacer group, represent an important class of bidentate chelating ligands incorporating both soft (P) and hard (O) donor atoms (Grushin, 2001). Transition metal complexes of these ligands show a variety of structural forms (*e.g.* Coyle *et al.*, 1998; Saravanabharathi *et al.*, 2002; Faller & Parr, 2000) with evidence for both bidentate and monodentate coordination of the ligand to the metal atom.

We report here the structure of the acetonitrile solvate of the 1:1 complex of Ph₂P(CH₂)P(O)Ph₂ with gold(I) bromide, [(dppmO)AuBr]·CH₃CN, (I). The structure comprises discrete molecules of [(dppmO)AuBr] and acetonitrile separated by normal van der Waals distances (Fig. 1). The dppmO ligand coordinates to the gold through the P atom to yield a linear two-coordinate P-Au-Br geometry, with Au-P = 2.241 (2) Å, Au-Br = 2.4069 (19) Å and P-Au-Br = 178.53 (4)°. These parameters are similar to those recorded for other two-coordinate R_3 PAuBr complexes (Bott *et al.*, 2000). The P=O bond length of 1.490 (3) Å is also in accord with values recorded for other phosphine oxides (See *et al.*, 1998).

The P-Au-Br and P=O groups lie almost parallel, with the torsion angle O-P···P-Au 8.3 (2)°. For comparison, in the structure of the benzene solvate of the dioxide, dppmO₂ (Antipin *et al.*, 1980), the P=O bonds are almost antiparallel, whereas in the structures of adducts of dppmO₂ with sodium halides (Hewertson *et al.*, 1970; Ding *et al.*, 2000) coordination of the O atoms to the sodium cation results in parallel P=O bonds and an Na···O distance of 2.457 (1) Å. An intermediate situation is observed for the structure of the 2:1 gold chloride

 $\odot~2003$ International Union of Crystallography Printed in Great Britain – all rights reserved

Received 1 August 2003 Accepted 11 August 2003 Online 23 August 2003 complex with dppm, [(AuCl)₂(dppm)] (Schmidbaur et al., 1977), where the Au–P···P–Au torsion angle is 67 (1)°, with an Au \cdots Au distance of 3.351 (2) Å, the latter suggestive of significant aurophilic interaction. In the present complex, the intramolecular Au···O distance of 3.274(4) Å is slightly longer than the Au···O distances for the [(tmpp)AuX]complexes [X = Cl, Br, I; tmpp = tris(2,4,6-trimethoxyphenyl)phosphine)] (Baker et al., 1995), which are in the range 2.92 (2)–3.15 (1) Å. This result, together with the absence of any significant distortion from linearity of the P-Au-Br bond, indicates the presence of only weak, if any, bonding interactions between the Au and O atoms and that the conformational structure of the complex is best ascribed as an outcome of crystal-packing considerations.

Experimental

[NBu₄][AuBr₂] (50 mg, 0.083 mmol) and diphenylphosphinomethane mono-oxide (dppmO, 33.4 mg, 0.083 mmol) were dissolved in acetonitrile (10 ml) to give a clear solution. Slow evaporation of the solvent yielded well formed, colorless crystals of (I); m.p. 506-507 K. The crystals slowly lost solvent over a period of weeks. Analysis found: C 46.0, H 3.5 N 1.7%; calculated for C₂₇H₂₅AuBrNOP₂: C 45.15, H 3.51, N 1.95%. ν_{max} (KBr)/cm⁻¹: 1179 (P=O str). δ_H (400 MHz, CDCl₃, p.p.m.): 3.53 [2H, dd, CH₂, ${}^{2}J_{P(Au)CH} = 12$ Hz, ${}^{2}J_{P(O)CH} = 12$ Hz], 7.36– 7.47 (8H, m, m-C₆H₅), 7.42-7.55 (4H, m, p-C₆H₅), 7.66-7.75 (8H, m, o-C₆H₅). δ_C (100 MHz, CDCl₃, p.p.m.): 31.4 [*dd*, CH₂, ¹*J*_{CP(O)} = 59 Hz, ${}^{1}J_{CP(Au)} = 26 \text{ Hz}], 129.4 [d, m-C_{6}H_{5}(PAu), {}^{3}J_{CP(Au)} = 12 \text{ Hz}], 129.4 [d, m-C_{6}H_{5}(PAu), {}^{$ m-C₆H₅(PO), ${}^{3}J_{CP(O)} = 12$ Hz], 129.7 [dd, i-C₆H₅(PAu), ${}^{1}J_{CP(Au)} =$ 61 Hz, ${}^{3}J_{CP(O)} = 4$ Hz], 131.2 [d, o-C₆H₅(PAu), ${}^{2}J_{CP(Au)} = 10$ Hz], 131.9 $[dd, i-C_6H_5(PO), {}^{1}J_{CP(O)} = 105 \text{ Hz}, {}^{3}J_{CP(Au)} = 3 \text{ Hz}], 132.3 [d, p-10.5]$ $C_6H_5(PAu)$, ${}^4J_{CP(Au)} = 3$ Hz], 132.9 [d, p- $C_6H_5(PO)$, ${}^4J_{CP(O)} = 3$ Hz], 133.7 [*d*, *o*-C₆H₅(PO), ${}^{2}J_{CP(O)} = 15$ Hz], δ_{P} (162 MHz, CDCl₃, p.p.m.): 25.0 [s, P(O)]; 20.0 [s, P(Au)].

Crystal data

[AuBr(C ₂₅ H ₂₂ OP ₂)]·CH ₃ CN	$D_x = 1.811 \text{ Mg m}^{-3}$
$M_r = 718.29$	Mo K α radiation
Monoclinic, $P2_1/c$	Cell parameters from
a = 11.657 (3) Å	reflections
b = 22.436 (17) Å	$\theta = 12.5 - 17.4^{\circ}$
c = 11.209 (4) Å	$\mu = 7.24 \text{ mm}^{-1}$
$\beta = 115.98 \ (2)^{\circ}$	T = 295 K
$V = 2635 (2) \text{ Å}^3$	Prism, colorless
Z = 4	$0.30 \times 0.30 \times 0.20$ mm
Data collection	

Rigaku AFC-7R diffractometer ω scans Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.135, \ T_{\max} = 0.235$ 6598 measured reflections 6045 independent reflections 4561 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.079$ S = 1.026045 reflections 299 parameters H-atom parameters not refined 25 n

 $R_{\rm int}=0.027$ $\theta_{\rm max} = 27.5^\circ$ $h = -13 \rightarrow 15$ $k = 0 \rightarrow 29$ $l = -14 \rightarrow 5$ 3 standard reflections every 150 reflections intensity decay: 5.0%

 $w = 1/[\sigma^2(F_o^2) + (0.0339P)^2]$ + 2.0179P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.05 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1.07 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.00103 (10)

Figure 1

Table 1 Selected geometric parameters (Å, °).

Au1-Br1	2.4069 (19)	P2-O1	1.490 (3)
Au1-P1	2.241 (2)	P2-C1	1.812 (5)
P1-C1	1.825 (5)	P2-C211	1.807 (5)
P1-C111	1.820 (5)	P2-C221	1.804 (5)
P1-C121	1.822 (5)	N1-C3	1.105 (14)
Br1-Au1-P1	178.53 (4)	C211-P2-C221	105.8 (2)
Au1-P1-C1	114.21 (15)	P1-C1-P2	115.0 (2)
Au1-P1-C111	113.87 (14)	P1-C111-C112	120.0 (4)
Au1-P1-C121	113.16 (14)	P1-C111-C116	121.0 (4)
C1-P1-C111	103.0 (2)	P1-C121-C126	122.7 (3)
C1-P1-C121	108.1 (2)	P1-C121-C122	117.7 (3)
C111-P1-C121	103.5 (2)	N1-C3-C2	177.9 (11)
O1-P2-C1	113.2 (2)	P2-C211-C216	125.1 (4)
O1-P2-C211	112.7 (2)	P2-C211-C212	115.7 (3)
O1-P2-C221	112.0 (2)	P2-C221-C222	118.8 (4)
C1-P2-C211	106.2 (2)	P2-C221-C226	121.5 (4)
C1-P2-C221	106.4 (2)		

H atoms were constrained in the riding model approximation, fixed to their parent C atoms at a C-H distance of 0.95 Å, and $U_{\rm iso}({\rm H})$ values were set to $1.2 U_{\rm eq}$ of the parent atom. The maximum and minimum residual electron density peaks were located within 1 Å of atom Au1.

Data collection: MSC/AFC-7 Diffractometer Control Software for Windows (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC-7 Diffractometer Control Software for Windows; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-2001); program(s) used to solve structure: TEXSAN for Windows; program(s) used to refine structure: TEXSAN for Windows and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows and PLATON (Spek, 1980-2001).

References

Antipin, M. Y., Struchkov, Y. T., Pisareva, S. A. & Medved, T. Y. (1980). Zh. Strukt. Khim. 21, 101-105.

Baker, L. J., Bott, R. C., Bowmaker, G. A., Healy, P. C., Skelton, B. W., Schwerdtfeger, P. & White, A. H. (1995). J. Chem. Soc. Dalton Trans. pp. 1341-1347.

View of the title compound, with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

- Bott, R. C., Bowmaker, G. A., Buckley, R. W., Healy, P. C. & Senake Perera, M. C. (2000). *Aust. J. Chem.* 53, 175–181.
- Coyle, R. J., Slovokhotov, Y. L., Antipin, M. Y. & Grushin, V. V. (1998). Polyhedron, 17, 3059–3070.
- Ding, Y., Fanwick, P. E. & Walton, R. A. (2000). Inorg. Chim. Acta, 309, 159– 162.
- Faller, J. W. & Parr, J. (2000). Organometallics, 19, 1829–1832.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Grushin, V. V. (2001). Organometallics, 20, 3950-3961.
- Hewertson, W., Kilbourn, B. T. & Mais, R. H. B. (1970). Chem. Commun. pp. 952–953.
- Molecular Structure Corporation (1999). MSC/AFC-7 Diffractometer Control Software for Windows. Version 1.02. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1997–2001). *TEXSAN for Windows*. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Saravanabharathi, D., Nethaji, M. & Samuelson, A. G. (2002). Polyhedron, 21, 2793–2800.
- Schmidbaur, H., Wohlleben, A., Wagner, F., Orama, O. & Huttner, G. (1977). *Chem. Ber.* **110**, 1748–1754.
- See, R. F., Dutoi, A. D., Fettinger, J. C., Nicastro, P. J. & Ziller, J. W. (1998). J. Chem. Crystallogr. 28, 893–898.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1980–2001). PLATON for Windows. Version 121201. University of Utrecht, The Netherlands.